Plastic deformation of directionally solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites

نویسندگان

  • Hirotaka Matsunoshita
  • Yuta Sasai
  • Kosuke Fujiwara
  • Kyosuke Kishida
  • Haruyuki Inui
چکیده

The high-temperature mechanical properties of directionally solidified (DS) ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites with a script lamellar structure have been investigated as a function of loading axis orientation and growth rate in a temperature range from 900 to 1500°C. These DS ingots are plastically deformed above 1000 and 1100 °C when the compression axis orientations are parallel to [1[Formula: see text]0]MoSi2 (nearly parallel to the growth direction) and [001]MoSi2, respectively. [1[Formula: see text]0]MoSi2-oriented DS eutectic composites are strengthened so much by forming a script lamellar microstructure and they exhibit yield stress values several times higher than those of MoSi2 single crystals of the corresponding orientation. The yield stress values increase with the decrease in the average thickness of MoSi2 phase in the script lamellar structure, indicating that microstructure refinement is effective in obtaining better high-temperature strength of these DS eutectic composites. Among the four ternary alloying elements tested (V, Nb, Ta and W), Ta is found to be the most effective in obtaining higher yield strength at 1400 °C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Polaritonic Materials in the THz Range made of Directionally Solidified Halide eutectics

Directionally solidified alkali halide binary eutectics have been recently proposed as THz polaritonic metamaterials based on their ordered microstructure and the suitable phonon-polariton resonances in the THz range of the spectrum. In the present work we focus on the search of new available eutectic systems both binary and ternary eutectics with well-ordered fibrous or lamellar microstructure...

متن کامل

Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy

We report the influence of growth rate and external magnetic field on the eutectic lamellar spacing and properties of directionally-solidified Ag-Cu eutectic alloys. The results indicated that the relationship between the lamellar spacing of directionally-solidified Ag-Cu alloys and the growth rate matched the prediction of the Jackson-Hunt model, and the constant was 5.8 µm³/s. The increasing ...

متن کامل

Shape Memory Effect in Cast Versus Deformation-Processed NiTiNb Alloys

The shape memory effect (SME) response of a deformation-processed NiTiNb shape memory alloy is benchmarked against the response of a cast alloy. The insoluble Nb element ternary addition is known to widen the hysteresis with respect to the binary NiTi alloy. Cast microstructures naturally consist of a cellular arrangement of characteristic eutectic microconstituents surrounding primary matrix r...

متن کامل

Precipitation in a Ni - Al - Mo Directionally Solidified Eutectic Composite

The most recently developed high temperature materials are known as in-situ composites or directionally solidified eutectics. Since the composites are formed during solidification, they have excellent morphological stabilities up to near their melting temperatures. The Ni-Al-Mo system has received the greatest attention for recent several years(1)~(3) since the alloy is expected to form a struc...

متن کامل

Effects of growth rate on the physical and mechanical properties of Sn-3.7Ag-0.9Zn eutectic alloy

Sn-3.7wt.%Ag-0.9wt.%Zn alloy was directionally solidified upward under different conditions, with different growth rates (V = 3.38 220.12 μm/s) at a constant temperature gradient (G = 4.33 K/mm) and with different temperature gradients (G = 4.33 -12.41 K/mm) at a constant growth rate (V = 11.52 μm/s) by using a Bridgman-type directional solidification furnace. The microstructure was observed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016